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Abstract:  For a number of years one of the authors of this paper
1
 has been collecting 

geometry problems created by the Japanese mathematician – Hirotaka Ebisui. In this paper 

we will make a brief analysis of some of these problems, examine their roots, and point out 

their value for the teaching of undergraduate mathematics.    

1. Introduction 

Elementary geometry has quite a long and rich history. We can trace its origins in ancient times. 

The word geometry comes from the Greek word geometrein and has its source in two Greek words 

– geo which means earth and metrein meaning measuring. However, the real roots of elementary 

geometry can be traced much earlier in ancient civilizations of Egypt and Babylon. We know also 

that geometry existed in ancient Hindu and Chinese civilizations (see [2] and [4]).  

In Egypt, geometry was a collection of rules or procedures obtained by experimentation, 

observation of analogies, sometimes guessing, and intuition. As we can easily guess it was 

knowledge full of errors and inaccuracies. However, at this time it was a sufficient enough 

knowledge for practical needs of the time. It was used mostly for land measuring, architecture and 

sometimes for carpentry works. In fact, the ancient Egyptian geometry (3000 BC to about 300 BC), 

is not considered as a science in our sense. It is just a collection of rules for calculations in land 

measuring, sometimes without any motivation or theoretical justification.  

Babylonian geometry (2000 to 1600 BC) was more advanced than the geometry in Egypt. They 

knew a theorem known later as the Pythagoras theorem (about 1500 years before Pythagoras). In 

fact in literature (see [2]) we can find speculations that Babylonian mathematics had quite strong 

influence on later Greek mathematics.  

Finally Greek geometry, starting from Thales of Miletus, was a deductive science. There we have 

geometric statements established on the base of deductions and formal proofs. This is the time when 

some of the most interesting developments in elementary geometry occurred. This is the time of the 

famous works of Thales of Miletus, Pythagoras and his disciples, Eudoxus, Hippocrates, Socrates, 

Plato and Euclid. The famous Euclid‟s Elements of Geometry is a summary of a large part of the 

mathematical knowledge of this time, and contains 13 books incorporating current, at this time, 

developments, as well as earlier works of Hippocrates (covered in Euclid‟s elements books I – IV), 

Pythagoreans (covered in books I-IV, VII, IX), Archytas (book VIII), Eudoxus (books V, VI, XII) 

and Theatetus (books X and XIII). It is important to notice that Elements do not contain all 

                                                 

1
 Hirotaka Ebisui is the author of the geometry problems presented in this paper. Mirek Majewski is the author of the 

text and images. All geometry images were created using Geometer‟s Sketchpad version 5. 



 The Electronic Journal of Mathematics and Technology, Volume 5, Number 2, ISSN 1933-2823 

  

189 

 

mathematical knowledge of this period. Euclid himself wrote eight more advanced books on 

geometry. Ancient Greeks created a new approach to elementary geometry by using postulates and 

proving geometric facts by deductive reasoning from postulates. 

A very interesting approach to mathematics, including geometry, had place in ancient China. The 

Chinese were always, and still are, very pragmatic. Their approach to mathematics was very 

algorithmic, and similar to the way how in our times we program our computers. A simple example 

taken from Jiuzhang Suanshu (English translation and commentaries [7]) demonstrates the Chinese 

way of dealing with mathematical problems: 

Example Right-Angled Triangles 

PROBLEM: Now, given a right-angled triangle, the lengths of its gou and gu are 3 chi and 4 chi 

respectively. Tell: what is the length of the hypotenuse?  

SOLUTION: Add the squares of the gou and the gu, take the square root [of the sum] giving the 

hypotenuse.    

This solution can be easily recognized as a verbally formulated algorithm:  

Input gou, gu 
A := gou^2+gu^2 
H := sqrt(A) 
Output H 

Most of the solutions presented in [7] use the same approach to solving problems, i.e. by following 

specific algorithms.   

2. Japanese geometry from the Edo period 

 

Fig. 1 Reconstructed sangaku from the Takemizuke shrine, Nagano prefecture, 450x200cm 

The Edo period in Japan, sometimes referred to as a renaissance in Japanese art and science, was 

also the time when a very specific form of mathematics flourished. This is mathematics that 

Japanese call wasan in order to distinguish it from the mathematics in the west known as yosan. 

Wasan problems were quite often painted or drawn on wooden tablets, called sangaku, and hung in 

Shinto or Buddhist temples. It was a way of thanking the gods for a moment of enlightenment while 

solving a mathematical problem, or a demonstration of the person‟s mathematical problem solving 

skills. Some of the sangaku were just simple pieces of wood with some basic text and usually a 

picture if the content was related to geometry. Some other sangaku were prepared on large wooden 
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boards, with many theorems, floral decorations and pictures. There were very small sangaku and 

huge ones a few meters long with a massive amount of information on them (see [4], [5] and [6]).  

Many of the problems exposed on sangaku tablets were elementary geometry problems (see fig.1). 

However we can easily notice a fundamental difference between sangaku geometry and the western 

geometry. On sangaku tablets we have complex constructions of circles inside of other circles, 

ellipses, rectangles and other figures. Usually these are problems where tangency of objects plays 

major role. At the same time in western geometry we deal with crossing lines, triangles, angles, and 

sometimes circles.  

Most of the geometry problems on sangaku tablets are very static in such a sense that we cannot 

move objects used there without changing their configuration and properties. For example a circle 

inscribed in a square or a triangle cannot be moved without changing the shape of the outer figure 

and the illustrated property. In many examples we deal with very complex figures where nothing 

can be moved. At the same time in western mathematics we deal with configurations of objects 

where there is quite a lot of freedom for moving these objects while the property, i.e. theorem, will 

be still valid. Figure 2 shows pictures of two geometric constructions. The construction on the left is 

a typical example of the western geometry. It is a construction of a tangent line to a circle from a 

given point A. Here both, the location of the point A, as well as location of the circle, and its size, 

can be changed and the line constructed this way will still be tangent to the circle. The construction 

on the right illustrates one of the sangaku problems where we have to calculate radius of one of the 

circles depending on the radius of the other circle. Here nothing can be moved.   

 

Fig. 2 Two geometric constructions: application of the Thales theorem (left) and a sangaku problem (right). 

3. Dynamic approach to elementary geometry 

Invention of computers and easy-to-use computer software opened a new era in elementary 

geometry. Now, anybody can open GeoGebra, Geometer‟s Sketchpad, Cabri or any other geometry 

software, develop his own geometry problems, experiment with them and obtain facts that can be 

verified with the computer without a formal proof of them. This leads to a vast number of 

interesting discoveries in elementary geometry. Let us look for a moment at a very simple example 

that can be obtained by a high school student while experimenting with any dynamic geometry 

software, e.g. Geometer‟s Sketchpad or Cabri.  

c

A

a
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Example – students’ explorations 

Basic experiments in Sketchpad with circles and a few lines, or triangles inscribed in a circle, lead 

to “discoveries” of many interesting properties. These properties usually are well known and their 

proofs are published in geometry textbooks, but students can discover them on their own, check 

them and later prove them or search a textbook for the proof. This builds some special interest in 

elementary geometry.   

 

Having a circle and two angles based on a common 
arc (here the arc AB and angles ∡C, ∡D), we can easily 
notice that the two angles are equal. Any dynamic 
geometry software, where measuring of angles is 
available, will confirm this fact.  

From here we can get a conclusion that two triangles, 
with a common base, inscribed in the same circle, 
have equal angles opposite the base (here ∡C=∡D).  

We can also easily find out that if one side of the 
triangle passes through the center of the circle then 
the opposite angle is 90°.  

 

Some of the discoveries of high school students go much beyond these examples. This opens a 

completely new era in elementary geometry – discovering facts by experimenting and later proving 

them.  

4. Hirotaka Ebisui and his geometry problems 

Hirotaka Ebisui is a Japanese mathematician, known as a person who is fascinated with the plane, 

elementary and projective geometry. In the last few years he produced a number of geometric 

constructions that illustrates a mathematical property. It is very difficult to evaluate how many such 

problems Hirotaka Ebisui has created. For the last few years one of the authors (M.M) has been 

collecting all files created by Hirotaka and combining them in one large document (about 220 

pages), and each page containing 3 to 4 constructions. This makes about 800 constructions. There 

are still more Hirotaka‟s files that were not included in this collection. This author has also been 

recreating many of Hirotaka‟s constructions using Geometer‟s Sketchpad, sometimes with 

Geometry Expressions. Each of them turns out to be a true fact.  

There is no doubt that Hirotaka‟s constructions have roots in sangaku problems. We can easily 

notice that many of his constructions remind us of the pictures that we have seen on sangaku tablets 

from the Edo period and later. The major difference is that his works are always constructions, 

while the ones on sangaku tablets were always drawings. We can also see that his constructions 

combine the western geometry point of view with the dynamic geometry approach.  

There one thing more that is worth to mention. His attitude while developing his constructions is 

very similar to the attitude that accompanied the old sangaku masters. From time to time on his 

constructions we can see a sentence where he thanks the Goddess of Mathematics or the Sun, or 

Earth for the joy of a new discovery. Similarly to the old masters of sangaku he frequently sends his 

works to friends with a text „this is my theorem, please enjoy‟.         

mADB = 69.05°

mACB = 69.05°
C

A B

D
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Fig. 3 Hirotaka Ebisui with Professor Gunter Weiss from TU in Dresden 

The original Hirotaka‟s Ebisui documents are usually very hard to understand and as a result only 

very few people are able to get a sense from them and appreciate his works.  

One day Prof. Gunter Weiss from Technical University in Dresden, in Germany, wrote to me
2
:  

“I personally am convinced that Hirotaka is a genius with an incredible instinct for extending and 

generalizing elementary geometric problems in an interesting and surprising way. He stands in the tradition 

of the so-called "Japanese Temple Geometry" both, concerning the elementary geometric topics as well as in 

his behavior not to publish his findings other than showing them to friends with the words "I found a new 

theorem, please enjoy". 

He has never had a "scientific pupil" and his work is not "mathematical mainstream" at all. But it is so 

fascinating!  

All this together makes me a true lover of his work, which expresses Japanese philosophy and tradition AND 

the beauty of pure simple geometry, which has no other aim than Japanese cherry blossoms. 

He cannot be forced to work on a certain problem one proposes to him, but he is like a never stopping 

fountain, when one listens to him and gets stimulated to work on his findings. He very seldom proves his 

"theorems" and seems to be quite content, if his graphics-software constantly shows the incidences if 

zoomed. But he also knows the "geometer's toolbox" for elementary geometry very well (Desargues' and 

Pappus' and Brianchon' theorems, angle at circumference, power of a point with respect to a circle ...) and 

sometimes adds a proof, if asked for that. 

I believe that his findings really are new and that nobody else dealt with this material before him. So the 

findings (- I call them findings and not theorems -) are due to him.” 

                                                 
2
 Personal communication with M. Majewski, published with permission of Prof. Gunter Weiss 
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5. Discussion of selected Hirotaka’s geometry problems 

In this chapter we will discuss selected Hirotaka‟s Ebisui constructions with a simple explanation of 

what is there, and what should be proved. In order to make these problems a bit more similar to the 

sangaku problems from the Edo period some fills were added. We selected only those problems that 

are simple enough to be understood by an average high school student.  

Before we proceed with the examples, it would be important to explain the convention used while 

developing the enclosed pictures. We used a specific color scheme that cannot be seen in black-and-

white printing. Therefore, we also vary the thickness of lines and points.   

Medium thick lines, green, are the starting point of the construction. Thin lines, usually blue, 

sometimes dashed are the construction lines. In many cases, if these lines are not needed any more, 

we hide them. However, sometimes we leave them in order to show more clearly how the 

construction was done. The thick, red lines, are the final ones that usually carry some property to be 

proved or are part of the final object, e.g. a triangle, rectangle, etc., with specific properties to be 

proved.  

Usually we hide all points that do not matter for the whole construction. We leave only selected 

points to emphasize some important features, e.g. point on a segment, on a circle, etc. These points 

are always small and with light blue filling. The medium size points with yellow filling are those 

construction points that in GSP file, or in GSP online applet, can be moved in order to check what 

will happen with the property to be proved.  

Finally, fills do not follow the above convention. We added them in order to make these 

constructions similar to the Edo period sangaku pictures.  

The numbers for each problem are the original numbers used by Hirotaka Ebisui. In order to avoid 

some confusion there is one thing that we should mention here. It happens from time to time that a 

few of his constructions may carry the same number.   

Some of the problems presented here are a bit more complicated than the remaining. Therefore, we 

illustrate them using two pictures. The first picture shows the initial stage of the construction, which 

is with what we started with and the second picture, shows the final construction.  

Example 1: From any triangle to the equilateral triangle (HI-A1-019-020) 

This example is one of the most recent constructions created by Hirotaka. It is simple enough to use 

as a high school problem, and the proof can be done by a high school student.  

 

We start by drawing any triangle, here this is 
ABC.  

Then we construct equilateral triangles with 
bases AB, BC and CA. 

Each of these new triangles we inscribe in a 
circle, here these are circles c1, c2 and c3. 

This way we get a construction shown to the 
left of this text.  

 

c1

c3

c2

A
B

C
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Select a new point on the circle c1, it will be 
point E.  

Draw a line through points E and A, and 
another line through points E and C.  

Points of intersection of these new lines with 
circles c2 and c3 mark as F and G. 

Draw another line passing through points F and 
G.  

This way we got a new triangle EFG. Mark its 
edges using a thick line (see picture to the left).  

Prove that EFG is an equilateral triangle. 

The proof of this fact is very straightforward. Each small triangle is equilateral. Therefore, all its 

angles are 60. In such case angles ∡E, ∡F and ∡G are also equal to 60. This makes triangle EFG 

equilateral.  

The example can be expanded in a few ways and in a few directions. In the next example we show 

its version for an arbitrary quadrilateral.  

Example 2: From any quadrilateral to a rectangle (HI-AI-020) 

 

We start by drawing an arbitrary 
quadrilateral with four vertices, A, B, C 
and D.  

We construct four circles each with one 
side of the quadrilateral as a diagonal.  

On one of these circles we select a new 
point, here it is point E.  

In exactly the same way as in the previous 
example we draw lines connecting E with 
points D and C obtaining this way two new 
points F and H 

We draw two more lines connecting A 
with F and B with H. These lines intersect 
in the point G.   

This is all, and now our task is to prove 
that quadrilateral EFGH is a rectangle. 

Proof of this fact is simple if we remember that if a triangle is inscribed in a circle, and one of its 

sides is the diagonal of the circle, then the angle opposite it has 90. Therefore, we got a 

quadrilateral with three angles equal to 90. This makes the fourth angle ∡G also 90 and proves 

that the quadrilateral EFGH is a rectangle.  

 

c1

c3

c2

F

G
A

B

C

E

F

G

H

A
B

C

D

E
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Example 3: From a triangle to a square (HI-AI-028) 

This is another nice example from the series of Hirotaka‟s problems where starting from an 

arbitrary triangle we construct an equilateral triangle or a rectangle.   

 

We start from an arbitrary triangle ABC. On 
each side of it we construct a circle with the 
triangle side as diagonal. 

From the center of one of the circles (here D) 
we construct a line perpendicular to the 
triangle side (here CDDE). This way we obtain 
the intersection point E.  

From the point A we draw a ray through E, 
getting this way the point G.  

We draw rays GC and GB obtaining this way 
two new points F and H.  

Finally we draw the segment AH.  

Now, we can check in a computer program that 
FG=FA=GH=AH, and one of the angles is 90°.   

Prove that the figure AFGH is a square.  

A reasonably easy and completely elementary proof of this fact we leave to our readers.  

Example 4: From three circles to a rectangle (HI 001) 

            

 

Create a large circle, a segment crossing it, 
select a point on the segment and construct 
two small circles passing through the 
selected point and points of intersection of 
the segment with the large circle. Centers of 
the small circles should be located on the 
segment.   

Construct rays from C and D passing 
through the point of tangency of both small 
circles. We will obtain two new points E 
and F.  

Construct rays CE and DF, and intersection 
points A and B on the large circle.  

Connect points ABCD and fill the area 
inside.  

The objective of this problem is to prove 
that figure ABCD is a rectangle.  

In GSP we can measure angles ∡ABD, ∡BAC and ∡ACD. GSP shows that each of them is 90°. We 

can easily check the proportions AB/CD and AC/BD and GSP shows that each of them is equal to 1.  

These properties hold if we move the segment, change size of any circle as long as the segment 

intersects with the large circle and radius of any circle is strictly larger than 0.   

HA = 8.99 cm

GH = 8.99 cm

mAFG = 90.00°

FA = 8.99 cm

FG = 8.99 cm

F

H

G

E

D

A B

C

AC

BD
 = 1.00

AB

CD
 = 1.00

mACD = 90.00°

mBAC = 90.00°

mABD = 90.00°

A E

B

F

C

D
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Example 5 Two perpendicular lines and two tangent circles (HI 004)  

 

This is one of the nicest problems in Hirotaka files. 
It is repeated in Hirotaka files in a few different 
versions.  

The starting point of this problem are two 
perpendicular lines, and two circles tangent to 
both lines and located in the opposite quarters of 
the plane.  

Construct lines connecting points of tangency, each 
on different circle. You will obtain lines EF’ and FE’ 
as well as two new points B and D.  

 

Now construct lines BF’ and DE obtain the 
intersection point C, hide the lines, and draw 
segments CB and CD.    

The objective of this problem is to prove that 
segments CB and CD are perpendicular.  

GSP evaluated this angle as 90 degrees and its 
value does not change if we change the size of any 
of these two circles.    

A reasonably easy, and completely elementary, proof based on the properties of angles inscribed in 

a circle we leave to our readers.  

Constructions of the following examples are slightly simpler. Therefore, we present them in a short 

form. We leave proofs of them to the readers.  

 

Example 6: HI 028 

This problem is just another version of the problem HI 004. 
Here both tangent circles are on the same side of one of the 
two perpendicular lines.  

Connect the tangency points to obtain the two dashed lines.  

Finally draw lines passing through points of intersection of 
the dashed lines with circles (lines k and j). 

The objective is to prove that lines k and j are parallel. 

mDCB = 90.00°

C

D

B
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k
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Example 7: HI 122 

This is another simple and nice problem.  

Start with a rectangle and a circle. Two adjacent points of 
the rectangle are on the circle.  

One of the intersection points of the rectangle with the 
circle label as D, construct triangle ADC.  

The objective is to prove that the ADC is an isosceles 
triangle. 

 

Example 8: HI 290 

Start with a rectangle and its diagonals. From one of the 
vertices construct a segment perpendicular, here CA, to one 
of the diagonals, and from its other end, here point A, draw 
another segment perpendicular to the other diagonal. 
Extend the new segment until it will contact the side of the 
rectangle, here it is AB.  

The objective is to prove that CAB is an isosceles 
triangle.  

 

Example 9: HI 222 

A rectangle and four circles are given. Each vertex of the 
rectangle is a center of one circle.  

For each of the circles draw a line passing through points of 
intersection of the circle with sides of the rectangle.  

Construct a polygon ABCD using the four new lines and 
their intersection points.  

The objective is to prove that the polygon ABCD is a 
rectangle.  

 

Example 10: HI 287 

This problem is in some sense similar to the problem HI 222. 
Start with a large circle and four smaller circles inside the 
large circle and tangent to it. Create a polygon connecting 
the four points of tangency.  

For each small circle draw a line passing through points of 
intersection of the circle with the sides of the polygon. Use 
these lines to create a new polygon, on the picture it is 
ABCD.  

The objective is to prove that ABCD is a parallelogram.   

CD  DA = 0.00 cm

2008-2-2
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Example 11: HI 069 

This is Hirotaka’s favorite problem. He published it on one 
the problem solving portals in Japan and he got quite 
enthusiastic response.  

Two intersecting circles c1 and c2 are given. Through one of 
the points of intersection, here point F, and centers of the 
circles construct a new circle c3. Points of intersection c3 

with two existing circles label as D and E.  

Draw line passing through points D and E. The line 
intersects the two circles c1 and c2 in two new points B and 
C. Connect points A with B and A with C.  

The objective is to prove that |AB|=|AC| 

 

Example 12: HI 386 

There are given two tangent circles. On one of them choose 
arbitrarily two points A and B.  

Construct two lines each one passing through the tangency 
point of circles and points A and B respectively. Label points 
of intersection of the line with the other circle as D and C. 
Draw segments BD and AC.  

Draw segments connecting opposite points on the edge of 
each circle, i.e. AB, EF, GH, and DC.  

The objective is to prove that AB||DC and EF||GH. 

6. Conclusions 

We could continue for many hours, days, months, or even years, explorations of Hirotaka‟s 

constructions. Many of the Hirotaka‟s problems can be used by teachers as exercises in problem 

solving in regular geometry classes. Some other can be used with mathematically gifted high 

school, as well as university, students.  

What is really important to point out here, is that all his problems are a valuable source of 

explorations in high school geometry topics: properties of circles, triangles, triangles inscribed in 

circles, perpendicularity of lines and segments, parallelism of lines, and many other elementary 

geometry topics that we teach every day. We have there also applications of basic theorems and 

sometimes less known facts in elementary geometry.  

In some more advanced Hirotaka‟s problems we can find applications, or extensions, of Napoleon, 

Morley, and many other famous theorems in elementary or projective geometry. Some other of his 

problems can be a starting point for advanced research in elementary geometry. Many of them 

should be considered as new valuable theorems in modern geometry. 
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